Abstract
On clinical application of biodegradable injectable polymer (IP) systems, quick extemporaneous preparation of IP formulations and longer duration time gel state after injection into the body are the important targets to be developed. Previously, we had reported temperature-responsive covalent gelation systems via bio-orthogonal thiol-ene reaction by ‘mixing strategy’ of amphiphilic biodegradable tri-block copolymer (tri-PCG) attaching acryloyl groups on both termini (tri-PCG-Acryl) with reactive polythiol. In other previous works, we found ‘freeze-dry with PEG/dispersion’ method as quick extemporaneous preparation method of biodegradable IP formulations. In this study, we applied this quick preparative method to the temperature-triggered covalent gelation system. The instant formulation (D-sample) could be prepared by ‘freeze-dry with PEG/dispersion’ just mixing of tri-PCG-Acryl micelle dispersion and tri-PCG/DPMP micelle dispersion with PEG, that can be prepared in 30 s from the dried samples. The obtained D-sample showed irreversible gelation and long duration time of gel state, which was basically the same as the formulations prepared by the usual heating dissolution method (S-sample). Interestingly, the D-sample could maintain its sol state for a longer time (24 h) after preparing the formulation at r.t. compared with the S-sample, which became a gel in 3 h after preparing. The IP system showed good biocompatibility and long duration time of the gel state after subcutaneous implantation. These characteristics of D-samples, quick extemporaneous preparation and high stability in the sol state before injection, would be very convenient in a clinical setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.