Abstract

Translocation of various proteins to the subcellular organelles is an essential mechanism to regulate the metabolic pathways and often vacuolar protein sorting (VPS) proteins are involved in this transportation. Plasmodium falciparum VPS29 (PfVPS29) is predicted to be a functional component in the assembly of the retromer complex; however, so far detailed characterization of PfVPS29 in its native form is not yet done. We report the successful expression and purification of tag-free recombinant PfVPS29 with a yield of 5.6 mg from 1 L of Escherichia coli culture. PfVPS29 was purified by combined anion-exchange and size exclusion chromatography. The protein showed a single band in SDS-PAGE and it exhibited molecular mass of 21.7 kDa as measured by MALDI-TOF mass spectrometry. Secondary structure was elucidated by circular dichroism spectroscopy. It was found to be a monomeric protein in solution as evident from dynamic light scattering studies, chemical cross-linking experiments and size exclusion chromatography. Subsequently, polyclonal anti-PfVPS29 antibody was generated and used for evaluating protein expression by western blot and following subcellular localization in P. falciparum by confocal immunofluoroscence microscopy. PfVPS29 was found to be located in cytoplasm and expressed from early trophozoite to schizont stages with maximum expression in trophozoite stage. This study provides purification, biophysical characterization and subcellular localization of PfVPS29 in different asexual stages of P. falciparum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call