Abstract

BackgroundSystemic administration of β-adrenoceptor (β-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic) administration of the β2-AR agonist formoterol.ResultsSkeletal muscle gene expression (from murine tibialis anterior) was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype) were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h) and chronic administration (1-28 days) of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc) was observed following acute and chronic administration of formoterol. Acute (but not chronic) administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol administration also appeared to influence some genes associated with the peripheral regulation of circadian rhythm (including nuclear factor interleukin 3 regulated, D site albumin promoter binding protein, and cryptochrome 2).ConclusionThis is the first study to utilize gene expression profiling to examine global gene expression in response to acute β2-AR agonist treatment of skeletal muscle. In summary, systemic administration of a β2-AR agonist had a profound effect on global gene expression in skeletal muscle. In terms of hypertrophy, β2-AR agonist treatment altered the expression of several genes associated with myostatin signaling, a previously unreported effect of β-AR signaling in skeletal muscle. This study also demonstrates a β2-AR agonist regulation of circadian rhythm genes, indicating crosstalk between β-AR signaling and circadian cycling in skeletal muscle. Gene expression alterations discovered in this study provides insight into many of the underlying changes in gene expression that mediate β-AR induced skeletal muscle hypertrophy and altered metabolism.

Highlights

  • Systemic administration of β-adrenoceptor (β-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes

  • We identified changes in the expression of mRNAs encoding genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress that occur within 4 hours and alter signaling pathways responsible for the long-term phenotypic footprint of b2-AR activation

  • In this study we have revealed that β2-AR agonist treatment altered the expression of several genes associated with myostatin signaling, a previously unreported effect of β-AR signaling in skeletal muscle

Read more

Summary

Introduction

Systemic administration of β-adrenoceptor (β-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. Previous studies have demonstrated that chronic administration of β-adrenoceptor (β-AR) agonists ( β2AR agonists) can increase myofibrillar protein content and induce skeletal muscle hypertrophy in mammals [1,2,3]. This β2-AR induced hypertrophy is believed to be a result of decreased proteolysis coupled with increased protein synthesis [4,5,6,7,8,9]. Underscoring the importance of β-AR signaling in regulating metabolism, transgenic mice lacking all three β-ARs are susceptible to diet-induced obesity These animals lack any diet- and cold-induced thermogenic response, indicating that β-ARs play a major role in energy expenditure [25]. Similar to the molecular mechanisms underlying skeletal muscle hypertrophy, our understanding of the pathways regulating the metabolic response to β-AR stimulation have yet to be fully elucidated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call