Abstract

GPA2/GPB5 and its receptor constitute a glycoprotein hormone-signaling system native to the genomes of most vertebrate and invertebrate organisms. Unlike the well-studied gonadotropins and thyrotropin, the exact function of GPA2/GPB5 remains elusive, and whether it elicits its functions as heterodimers, homodimers or as independent monomers remains unclear. Here, the glycoprotein hormone signaling system was investigated in adult mosquitoes, where GPA2 and GPB5 subunit expression was mapped and modes of its signaling were characterized. In adult Aedes aegypti mosquitoes, GPA2 and GPB5 transcripts co-localized to bilateral pairs of neuroendocrine cells, positioned within the first five abdominal ganglia of the central nervous system. Unlike GPA2/GPB5 homologs in human and fly, GPA2/GPB5 subunits in A. aegypti lacked evidence of heterodimerization. Rather, cross-linking analysis to determine subunit interactions revealed A. aegypti GPA2 and GPB5 subunits may form homodimers, although treatments with independent subunits did not demonstrate receptor activity. Since mosquito GPA2/GPB5 heterodimers were not evident by heterologous expression, a tethered fusion construct was generated for expression of the subunits as a single polypeptide chain to mimic heterodimer formation. Our findings revealed A. aegypti LGR1 elicited constitutive activity with elevated levels of cAMP. However, upon treatment with recombinant tethered GPA2/GPB5, an inhibitory G protein (Gi/o) signaling cascade is initiated and forskolin-induced cAMP production is inhibited. These results further support the notion that heterodimerization is a requirement for glycoprotein hormone receptor activation and provide novel insight to how signaling is achieved for GPA2/GPB5, an evolutionary ancient neurohormone.

Highlights

  • Members of the cystine knot growth factor (CKGF) superfamily, which are characterized with a CKGF domain as their primary structural feature, include (i) the glycoprotein hormones, (ii) the invertebrate bursicon hormone, (iii) the transforming growth factor beta (TGFβ) family, (iv) the bone morphogenetic protein (BMP) antagonist family, (v) the platelet-derived growth factor (PDGF) family and (vi) the nerve growth factor (NGF) family

  • Much is known about the classic vertebrate glycoprotein hormones including luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), and chorionic gonadotropin (CG) along with their associated receptors, little progress has been made far toward better understanding the function of GPA2/GPB5 signaling and subunit interactions, for the invertebrate organisms

  • Our results confirm that heterodimerization of A. aegypti and H. sapiens GPA2/GPB5 are required for the activation of their cognate receptors LGR1 and TSHR, respectively

Read more

Summary

Introduction

Members of the cystine knot growth factor (CKGF) superfamily, which are characterized with a CKGF domain as their primary structural feature, include (i) the glycoprotein hormones, (ii) the invertebrate bursicon hormone, (iii) the transforming growth factor beta (TGFβ) family, (iv) the bone morphogenetic protein (BMP) antagonist family, (v) the platelet-derived growth factor (PDGF) family and (vi) the nerve growth factor (NGF) family. Members of the glycoprotein hormone family include follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH) as well as chorionic gonadotropin (CG), which are implicated in governing several aspects of physiology including reproduction, energy metabolism along with growth and development. These hormones are formed by the heterodimerization of two cystine-knot glycoprotein subunits, an α subunit that is structurally identical for each hormone (GPA1), and a hormonespecific β subunit (GPB1-4) [1, 2]. GPA2/GPB5 has been implicated or demonstrated to function in development [12,13,14,15], hydromineral balance [13,14,15,16,17,18] as well as in reproduction [15, 17, 19]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call