Abstract

Thyroid hormones (THs) are critical for the growth, development, and homeostasis of many organisms and are necessary for metamorphosis of Xenopus laevis tadpoles. TH-induced metamorphosis requires alterations in the transcriptome and the proteome. However, only a few of the molecular components of this developmental program have been identified and their interrelationship remains unclear. Using a cDNA array comprised of 420 known anuran genes and quantitative PCR, we have identified 93 TH-responsive genes in the tail of premetamorphic tadpoles after exogenous administration of T3. Fifty-three of these mRNA transcripts have not previously been characterized as TH responsive in any species. The gene expression profiles show distinctive temporal patterns with most transcript steady-state levels increasing after induction of metamorphosis. Two-dimensional gel electrophoresis of total protein extracts from the tail shows changes in steady-state levels of many proteins after T3 treatment. Of the up-regulated proteins, 10 were identified by peptide mass mapping. These data identify potential components involved in the regulation of Xenopus tail regression by T3 and begin to address a critical question regarding the interrelationship between the transcriptome and the proteome in TH-dependent developmental processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call