Abstract

Background and purposeExisting studies have shown that circulating miRNA can be used as biomarkers of heart failure (HF). However, the circulating miRNA expression profile in Uyghur HF patients is unclear. In this study, we identified the miRNA profiles in the plasma of Uyghur HF patients and preliminarily explored their potential functions to provide new ideas for the diagnosis and treatment of HF. MethodsTotally, 33 Uyghur patients with HF with reduced ejection fraction (<40%) were included in the HF group and 18 Uyghur patients without HF were included in the control group. First, high-throughput sequencing was used to identify differentially expressed miRNAs in the plasma of heart failure patients (n = 3) and controls (n = 3). Second, the differentially expressed miRNAs were annotated with online software and bioinformatics analysis was used to explore the critical roles of these circulating miRNAs in HF. Moreover, four selected differentially expressed miRNAs were validated by quantitative real-time PCR (qRT-PCR) in 15 controls and 30 HF patients. The diagnostic value of three successfully validated miRNAs for heart failure was assessed using receiver operating characteristic curve (ROC) analysis. Finally, to explore the expression levels of the three successfully validated miRNAs in HF hearts, thoracic aortic constriction (TAC) mice models were constructed and their expression in mice hearts was detected by qRT-PCR. ResultsSixty-three differentially expressed miRNAs were identified by high-throughput sequencing. Of these 63 miRNAs, most were located on chromosome 14, and the OMIM database showed that 14 miRNAs were associated with HF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the target genes were mostly involved in ion or protein binding, the calcium signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, inositol phosphate metabolism, autophagy, and focal adhesion. Of the four selected miRNAs, hsa-miR-378d, hsa-miR-486-5p and hsa-miR-210-3p were successfully validated in the validation cohort and hsa-miR-210-3p had the highest diagnostic value for HF. Meanwhile, miR-210-3p was found to be significantly upregulated in the hearts of TAC mice. ConclusionA reference set of potential miRNA biomarkers that may be involved in HF is constructed. Our study may provide new ideas for the diagnosis and treatment of HF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.