Abstract
ObjectiveTo identify differentially expressed long noncoding RNAs (lncRNAs) in condyloma acuminatum (CA) and to explore their probable regulatory mechanisms by establishing coexpression networks.MethodsHigh-throughput RNA sequencing was performed to assess genome-wide lncRNA expression in CA and paired adjacent mucosal tissue. The expression of candidate lncRNAs and their target genes in larger CA specimens was validated using real-time quantitative reverse transcriptase polymerase chain reaction (RT‒qPCR). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for the functional enrichment analysis of these candidate lncRNAs and differential mRNAs. The coexpressed mRNAs of the candidate lncRNAs, calculated by Pearson’s correlation coefficient, were also analysed using GO and KEGG analysis. In addition, the interactions among differentially expressed lncRNAs (DElncRNAs)-cis-regulatory transcription factors (cisTFs)-differentially expressed genes (DEGs) were analysed and their network was constructed.ResultsA total of 546 lncRNAs and 2553 mRNAs were found to be differentially expressed in CA compared to the paired control. Functional enrichment analysis revealed that the DEGs coexpressed with DElncRNAs were enriched in the terms of cell adhesion and keratinocyte differentiation, and the pathways of ECM-receptor interaction, local adhesion, PI3K/AKT and TGF-ß signaling. We further constructed the network among DElncRNAs-cisTFs-DEGs and found that these 95 DEGs were mainly enriched in GO terms of epithelial development, regulation of transcription or gene expression. Furthermore, the expression of 3 pairs of DElncRNAs and cisTFs, EVX1-AS and HOXA13, HOXA11-AS and EVX1, and DLX6-AS and DLX5, was validated with a larger number of specimens using RT‒qPCR.ConclusionCA has a specific lncRNA profile, and the differentially expressed lncRNAs play regulatory roles in mRNA expression through cis-acting TFs, which provides insight into their regulatory networks. It will be useful to understand the pathogenesis of CA to provide new directions for the prevention, clinical treatment and efficacy evaluation of CA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.