Abstract
ABSTRACT Even though N6-methyladenosine (m6A) RNA modifications are increasingly being implicated in human disease, their mechanisms are not fully understood in smokers with coronary artery disease (CAD). Thirty m6A-related regulators’ expression (MRRE) in CAD individuals (smokers and non-smokers) were analyzed from GEO. Support Vector Machine, random forest, and nomogram models were constructed to assess its clinical value. Consensus clustering, principal component analysis, and ssGSEA were used to construct a full picture of m6A-related regulators in smokers with CAD. Oxygen-glucose deprivation (OGD) and qRT-PCR were used to validate hypoxia’s effect on MRRE. A comparison between smokers with CAD and controls revealed lower expression levels of RBM15B, YTHDC2, and ZC3H13. Based on three key MRREs, all models showed good clinical value, and smokers with CAD were divided into two distinct molecular subgroups. The correlations were found between key MRRE and the degree of immune infiltration. Three key MRREs in HUVECs and FMC84 mouse cardiomyocytes were reduced in the OGD group. Through hypoxia, smoking might reduce the expression levels of RBM15B, YTHDC2, and ZC3H13 in smokers with CAD. Our findings provide an important theoretical basis for the treatment of smokers with CAD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.