Abstract

The aim of this study was to characterize the mRNA content of mammalian cochlear outer hair cells (OHCs) and to search for specific genes possibly involved in their unique properties. Indeed, OHCs, which feature high-frequency electromotility, are responsible for the exquisite sensitivity and frequency selectivity of the cochlea. Damage to these cells, which occurs in various conditions, causes a reduction in the cochlear sensitivity by about 50 dB and the alteration of frequency discrimination. Total RNA was extracted from about 2000 mechanically dissociated OHCs, and a polymerase chain reaction (PCR) amplified cDNA library was constructed. The presence of the alpha-9 acetylcholine receptor subunit, preferentially expressed in OHCs, was found by direct PCR amplification of the library. A systematic sequencing of 218 clones showed 78% known genes, 11% EST-related sequences, and 11% unknown genes. The known-gene group was characterized by two main features: a large proportion (55%) of mitochondrial transcripts and an abundance in calcium-binding proteins, such as calmodulin and calbindin, for which expression has already been demonstrated in OHCs. Another protein, the oncomodulin recently shown to be OHC specific, was also found, and its mRNA expression was confirmed by in situ hybridization. Among the 24 unknown genes, 7 were expressed in a restricted pattern, including one expressed in cochlea and spleen and, to a lesser extent, in lungs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.