Abstract

Soil salinization is a major abiotic stress condition that affects about half of global agricultural lands. Salinity leads to osmotic shock, ionic imbalance and/or toxicity and build-up of reactive oxygen species. Na⁺/H⁺ antiporters (NHXs) are integral membrane transporters that catalyze the electro-neutral exchange of K⁺/Na⁺ for H⁺ and are implicated in cell expansion, development, pH/ion homeostasis and salt tolerance. Porteresia coarctata is a salt secreting halophytic wild rice that thrives in the coastal-riverine interface. P. coarctata NHX1 (PcNHXI) expression is induced by salinity in P. coarctata roots and shows high sequence identity to Oryza sativa NHX1. PcNHX1 confers hygromycin and Li+ sensitivity and Na+ tolerance transport in a yeast strain lacking sodium transport systems. Additionally, transgenic PcNHX1 expressing tobacco seedlings (PcNHX1 promoter) show significant growth advantage under increasing concentrations of NaCl and MS salts. Etiolated PcNHX1 seedlings also exhibit significantly elongated hypocotyl lengths in 100 mM NaCl. PcNHX1 expression in transgenic tobacco roots increases under salinity, similar to expression in P. coarctata roots. Under incremental salinity, transgenic lines show reduction in leaf Na+, stem specific accumulation of Na+ and K+ (unaltered Na+/K+ ratios). PcNHX1 transgenic plants also show enhanced chlorophyll content and reduced malondialdehyde (MDA) production in leaves under salinity. The above data suggests that PcNHX1 overexpression (controlled by PcNHX1p) enhances stem specific accumulation of Na+, thereby protecting leaf tissues from salt induced injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.