Abstract

One of the most important strategies evolved by plants to tolerate heavy metals (HMs) is their sequestration into the vacuole. Recent studies have demonstrated that Cu sequestration into vacuole is dependent on the electrochemical gradient generated by vacuolar proton pumps: the V-H+-PPase and the V-H+-ATPase. In a previous study, we demonstrated that co-expression of V-H+-PPase and a sodium/proton antiporter genes, isolated from wheat, in transgenic tobacco plants significantly increases both H+ pumping activity of the endogenous V-H+-ATPase and V-H+-PPase compared to wild-type (WT) plants, all grown in the absence of stress. In the present study, we evaluated the effect of expression, in tobacco, of vacuolar proton pump, TaVP1, singly or in combination with sodium/proton antiporter, TaNHXS1, on copper (Cu) tolerance and accumulation. Results showed that, when subjected to Cu stress, TaVP1 single transgenic tobacco lines exhibited a more robust root system, greater biomass production, less chlorophyll loss, lower MDA and H2O2 production, and higher catalase activity and accumulated more Cu than did WT. Interestingly, double transgenic tobacco lines exhibited the best Cu tolerance and accumulation than either of the single TaVP1 transgenic lines or WT plants, when subjected to excess Cu. In fact, double transgenic lines accumulated 2.5-fold and 1.9-fold more Cu than did WT and single TaVP1 lines, respectively. Thus, these results clearly demonstrate the usefulness of expression of vacuolar proton pump alone or in combination with sodium/proton antiporter as novel strategy for Cu phytoremediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call