Abstract

The hair cycle involves remodeling of cells and of cell groups into a complex follicular structure. During skin appendage development, adhesion molecules such as neural cell adhesion molecule (NCAM) and deleted in colon carcinoma (DC) participate in the formation of cell groups. NCAM has been found to be expressed in the mesenchyme during mouse hair follicle induction. DCC expression has been observed in the epithelial cells of the developing feather. We postulate that these two molecules may also define cell groups in the cycling hair follicle. Here we report their spatio-temporal expression patterns during the depilation-induced murine hair cycle. NCAM expression was also examined in positive and negative hair-inductive follicular papilla cell lines. Throughout the hair cycle, DCC expression was confined to the basal keratinocytes of the epidermis and the epithelial portion of the hair follicle. During mid-anagen, two types of deleted in colon carcinoma staining were observed. One was a cell surface pattern seen in the epithelial cells in the bulge region where the follicular stem cells reside. The other was a diffuse cytoplasmic staining pattern in the transient hair follicle epithelia located below the bulge region. Prominent NCAM staining was observed in the follicular papilla throughout the hair cycle and was accompanied by weak staining of the matrix epithelia. NCAM expression correlated with hair induction by a follicular papilla cell line. The results suggest that DCC and NCAM define the permanent cell groups of the hair follicle and that NCAM is important for hair induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.