Abstract

BackgroundAxonal degeneration and neuronal loss have been described as the major causes of irreversible clinical disability in multiple sclerosis (MS). The aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) protein has been associated with neuroprotection in models of ischemia and neuronal responses to stressors.MethodsTo characterize its potential to influence inflammatory neurodegeneration, we examined ARNT2 expression in the experimental autoimmune encephalomyelitis (EAE) model of MS and characterized mediators that influence ARNT2 expression as well as plausible partners and targets.ResultsArnt2 message and protein levels dropped significantly in EAE spinal cords as disease developed and were lowest at peak disability. ARNT2 expression is prominent in neuronal cell bodies within the gray matter with some staining in glial fibrillary acidic protein (GFAP)+ astrocytes in healthy animals. At peak disease, ARNT2 expression is reduced by 20–50% in gray matter neurons compared to healthy controls. ARNT2 intensity in neurons throughout the EAE spinal cord correlated inversely with the degree of immune cell infiltration (r = − 0.5085, p < 0.01) and axonal damage identified with SMI32 staining (r = − 0.376, p = 0.032). To understand the relationship between ARNT2 expression and neuronal health, we exposed enriched cortical cultures of neurons to hydrogen peroxide (H2O2) to mimic oxidative stress. H2O2 at lower doses rapidly increased ARNT2 protein levels which returned to baseline within 3–4 h. Exposure to higher doses of H2O2) dropped ARNT2 levels below baseline, preceding cytotoxicity measured by morphological changes and lactate dehydrogenase release from cells. Decreases in ARNT2 secondary to staurosporine and H2O2 preceded increases in cleaved caspase 3 and associated apoptosis. We also examined expression of neuronal pas 4 (Npas4), whose heterodimerization with ARNT2 drives expression of the neurotrophic factor brain-derived neurotrophic factor (Bdnf). Like ARNT2, Npas4 levels also decline at the onset of EAE and are linked to decreases in Bdnf. In vitro, H2O2 exposure drives Npas4 expression that is tied to increases in Bdnf.ConclusionOur data support ARNT2 as a neuronal transcription factor whose sustained expression is linked to neuronal and axonal health, protection that may primarily be driven through its partnering with Npas4 to influence BDNF expression.

Highlights

  • Axonal degeneration and neuronal loss have been described as the major causes of irreversible clinical disability in multiple sclerosis (MS)

  • Arnt2 expression is altered over the course of EAE We began our investigation by characterizing aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) levels in the spinal cord where inflammation and degeneration are most prevalent in the Myelin oligodendroglial protein (MOG)-induced model of MS

  • This is the region where tissue changes are thought to contribute to disability in this model. qPCR analysis of chronic EAE spinal cord samples was performed with tissues from pre-onset, onset, peak, recovery/stabilization, and worsening stages of the disease compared to sham-immunized controls or healthy non-immunized littermates (Fig. 1a)

Read more

Summary

Introduction

Axonal degeneration and neuronal loss have been described as the major causes of irreversible clinical disability in multiple sclerosis (MS). The aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) protein has been associated with neuroprotection in models of ischemia and neuronal responses to stressors. The aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) is a member of the basic-helix-loop-helix period-ARNT-single-minded protein (bHLH/PAS) transcription factor family [1]. ARNT2 heterodimerizes with other bHLH/PAS members to direct transcription of target genes in response to various environmental and physiological stimuli. These include hypoxia (hypoxiainducible factor 1α (HIF-1α)), early cell determination/ differentiation (single-minded homolog 1 (SIM1)) and environmental toxins (aryl hydrocarbon receptor (AhR)) [2]. Arnt gene transcript levels declined significantly following 2 h of recirculation post-ischemic injury, preceding neuronal death at 24 h of recirculation [10]. The importance of Arnt has been demonstrated in a case study of a family with a nonsense mutation in Arnt, where children exhibited microcephaly and delayed or loss of myelination [15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call