Abstract

BackgroundHaemophilus ducreyi, the causative agent of the sexually transmitted disease chancroid, contains a flp (fimbria like protein) operon that encodes proteins predicted to contribute to adherence and pathogenesis. H. ducreyi mutants that lack expression of Flp1 and Flp2 or TadA, which has homology to NTPases of type IV secretion systems, have decreased abilities to attach to and form microcolonies on human foreskin fibroblasts (HFF). A tadA mutant is attenuated in its ability to cause disease in human volunteers and in the temperature dependent rabbit model, but a flp1flp2 mutant is virulent in rabbits. Whether a flp deletion mutant would cause disease in humans is not clear.ResultsWe constructed 35000HPΔflp1-3, a deletion mutant that lacks expression of all three Flp proteins but has an intact tad secretion system. 35000HPΔflp1-3 was impaired in its ability to form microcolonies and to attach to HFF in vitro when compared to its parent (35000HP). Complementation of the mutant with flp1-3 in trans restored the parental phenotype. To test whether expression of Flp1-3 was necessary for virulence in humans, ten healthy adult volunteers were experimentally infected with a fixed dose of 35000HP (ranging from 54 to 67 CFU) on one arm and three doses of 35000HPΔflp1-3 (ranging from 63 to 961 CFU) on the other arm. The overall papule formation rate for the parent was 80% (95% confidence interval, CI, 55.2%-99.9%) and for the mutant was 70.0% (95% CI, 50.5%-89.5%) (P = 0.52). Mutant papules were significantly smaller (mean, 11.2 mm2) than were parent papules (21.8 mm2) 24 h after inoculation (P = 0.018). The overall pustule formation rates were 46.7% (95% CI 23.7-69.7%) at 30 parent sites and 6.7% (95% CI, 0.1-19.1%) at 30 mutant sites (P = 0.001).ConclusionThese data suggest that production and secretion of the Flp proteins contributes to microcolony formation and attachment to HFF cells in vitro. Expression of flp1-3 is also necessary for H. ducreyi to initiate disease and progress to pustule formation in humans. Future studies will focus on how Flp proteins contribute to microcolony formation and attachment in vivo.

Highlights

  • Haemophilus ducreyi, the causative agent of the sexually transmitted disease chancroid, contains a flp operon that encodes proteins predicted to contribute to adherence and pathogenesis

  • H. ducreyi mutants that lack expression of either Flp1 and Flp2, which encode fimbria like proteins, or tadA, which has homology to NTPases of type IV secretion systems, have decreased abilities to attach to human foreskin fibroblasts (HFF) and to form microcolonies on HFF [4,5]

  • Human inoculation experiments To determine whether the Flp proteins play a role in pathogenesis, 35000HPΔflp1-3 was compared with 35000HP for virulence using a mutant parent comparison trial in the human model of infection

Read more

Summary

Introduction

Haemophilus ducreyi, the causative agent of the sexually transmitted disease chancroid, contains a flp (fimbria like protein) operon that encodes proteins predicted to contribute to adherence and pathogenesis. H. ducreyi mutants that lack expression of Flp and Flp or TadA, which has homology to NTPases of type IV secretion systems, have decreased abilities to attach to and form microcolonies on human foreskin fibroblasts (HFF). H. ducreyi contains a 12.8 kb flp (fimbria like protein) operon with 15 genes (flp1-flp2-flp3-orfBC-rcpAB-orfD-tadABCDEFG) that encode products with homology to proteins encoded by the tad locus in A. actinomycetemcomitans [3,4]. H. ducreyi mutants that lack expression of either Flp and Flp, which encode fimbria like proteins, or tadA, which has homology to NTPases of type IV secretion systems, have decreased abilities to attach to human foreskin fibroblasts (HFF) and to form microcolonies on HFF [4,5]. Whether FlpTad-mediated adherence and/or microcolony formation are critical factors in the virulence of H. ducreyi is unclear [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.