Abstract

BackgroundSV2A, SV2B and SV2C are synaptic vesicle proteins that are structurally related to members of the major facilitator superfamily (MFS). The function and transported substrate of the SV2 proteins is not clearly defined although they are linked to neurotransmitters release in a presynaptic calcium concentration-dependent manner. SV2A and SV2B exhibit broad expression in the central nervous system while SV2C appears to be more restricted in defined areas such as striatum. SV2A knockout mice start to display generalized seizures at a late developmental stage, around post-natal day 7 (P7), and die around P15. More recently, SV2A was demonstrated to be the molecular target of levetiracetam, an approved anti-epileptic drug (AED). The purpose of this work was to precisely analyze and quantify the SV2A, SV2B and SV2C expression during brain development to understand the contribution of these proteins in brain development and their impact on epileptic seizures.ResultsFirst, we systematically analyzed by immunohistofluorescence, the SV2A, SV2B and SV2C expression during mouse brain development, from embryonic day 12 (E12) to P30. This semi-quantitative approach suggests a modulation of SV2A and SV2B expression in hippocampus around P7. This is the reason why we used various quantitative approaches (laser microdissection of whole hippocampus followed by qRT-PCR and western blot analysis) indicating that SV2A and SV2B expression increased between P5 and P7 and remained stable between P7 and P10. Moreover, the increase of SV2A expression in the hippocampus at P7 was mainly observed in the CA1 region while SV2B expression in this region remains stable.ConclusionsThe observed alterations of SV2A expression in hippocampus are consistent with the appearance of seizures in SV2A−/− animals at early postnatal age and the hypothesis that SV2A absence favors epileptic seizures around P7.

Highlights

  • SV2A, SV2B and SV2C are synaptic vesicle proteins that are structurally related to members of the major facilitator superfamily (MFS)

  • At post-natal day 7 (P7), the signal remained stable in the olfactory bulbs, indicating that the decrease observed around P7 in hippocampus was not due to technical issues related to immunolabelling but truly reflects reduced levels of SV2A in hilus of dentatus gyrus (DG) at P7

  • We believe that this decrease in SV2A and in SV2B expression which is apparent for hippocampus, is a consequence of a phenomenon which is not related to the SV2A or SV2B expression per se but rather to the enlargement and growth of tissue as myelin appears at that age in these various mouse brain regions [37], potentially affecting the semi-quantitative immunohistological read out suggesting a decrease in SV2A or SV2B expression

Read more

Summary

Introduction

SV2A, SV2B and SV2C are synaptic vesicle proteins that are structurally related to members of the major facilitator superfamily (MFS). The purpose of this work was to precisely analyze and quantify the SV2A, SV2B and SV2C expression during brain development to understand the contribution of these proteins in brain development and their impact on epileptic seizures. Cloning of the individual family members resulted in the identification of three different isoforms, SV2A [1], SV2B [4] and SV2C [5]. SV2 proteins show similarities to members of the membrane transporter family and belong to the major facilitator superfamily (MFS), the transported substrate has not been identified yet, and the molecular function of SV2 proteins remains elusive. Mahrhold et al reported that the carboxy-terminal region of SV2C intravesicular domain mediates the Botulinum Neurotoxin A entry leading to its toxic effects [16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call