Abstract

Poly-alpha2,8-sialic acid (polySia) is a unique modification of the neural cell adhesion molecule, NCAM, tightly associated with neural development and plasticity. However, the vital role attributed to this carbohydrate polymer has been challenged by the mild phenotype of mice lacking polySia due to NCAM-deficiency. To dissect polySia and NCAM functions, we generated polySia-negative but NCAM-positive mice by simultaneous deletion of the two polysialyltransferase genes, St8sia-II and St8sia-IV. Beyond features shared with NCAM-null animals, a severe phenotype with specific brain wiring defects, progressive hydrocephalus, postnatal growth retardation, and precocious death was observed. These drastic defects were selectively rescued by additional deletion of NCAM, demonstrating that they originate from a gain of NCAM functions because of polySia deficiency. The data presented in this study reveal that the essential role of polySia resides in the control and coordination of NCAM interactions during mouse brain development. Moreover, this first demonstration in vivo that a highly specific glycan structure is more important than the glycoconjugate as a whole provides a novel view on the relevance of protein glycosylation for the complex process of building the vertebrate brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.