Abstract

Superoxide dismutase (SOD) protects cells exposed to an excess of the free radical nitric oxide, by preventing the formation of peroxynitrite. Certain central cholinergic neurons express constitutive nitric oxide synthase (nNOS), and presumably they are at risk from peroxynitrite intoxication. Immunocytochemistry for choline acetyltransferase (ChAT) was combined with in situ hybridization histochemistry (ISHH) to examine whether brain cholinergic populations differ with respect to their expression of the messenger RNA molecules (mRNAs) for the manganese-dependent (Mn-SOD) and copper/zinc-dependent superoxide dismutases (Cu /Zn-SOD). The cholinergic neurons located in the reticular formation of the upper brainstem (the laterodorsal tegmental nucleus [LDTN] and the pedunculopontine nucleus [PPN]) were found to express relatively high levels of Mn-SOD mRNA, whereas cholinergic neurons located in the basal forebrain (substantia innominata [SI], diagonal band [DB], medial septum [MS], and the nucleus basalis magnocellularis [nBM]), and the striatal cholinergic interneurons expressed low to intermediate levels of Mn-SOD mRNA. The rank order of median Mn-SOD mRNA density per cholinergic cell was LDTN > PPN > SI > striatum = nBM = DB > MS. This is similar to the rank order of nNOS mRNA densities in the cholinergic cells in these regions (R = 0.9, p < 0.02). The rank order of Cu/Zn-SOD mRNA levels in cholinergic populations (DB > LDTN = PPN =MS > SI = nBM = striatum) was not correlated with nNOS mRNA (R = 0.29, P > 0.05). Thus, for cholinergic neurons, Mn-SOD may be important for protection from NO-related oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call