Abstract

During development, mice with mutations of stem cell factor (SCF) or its receptor c-kit exhibit defects in melanogenesis, as well as hematopoiesis and gonadogenesis. Because melanocytes derive from neural crest cells, the role of SCF and c-kit was investigated in the neural crest-derived childhood tumor neuroblastoma. Using reverse transcription-polymerase chain reaction analysis, simultaneous expression of steady-state mRNA for the SCF ligand and its receptor c-kit was found in 14 of 14 (100%) human neuroblastoma cell lines and clones and in 8 of 18 (45%) human neuroblastoma tumor samples. Functional blockade of c-kit receptors in the cell lines SK-N-BE(2) and SH-SY5Y using the mouse monoclonal anti-c-kit antibody SR-1 resulted in a significant decrease in cellular growth rate when measured by either 3H-thymidine incorporation or clonogenicity. In addition, higher levels of c-kit mRNA expression were associated with parental neuroblastoma cell lines and subclones with a neuronal (N) differentiation phenotype, whereas lower levels of c-kit mRNA were associated with neuroblastoma cell line subclones having a schwannian/glial/melanocytic pattern of differentiation. However, the differentiation phenotype of neuroblastoma cell lines was not directly altered when c-kit expression was blocked using the SR-1 antibody. In summary, these data indicate that c-kit receptor expression may play a significant role in the growth regulation of the two neuroblastoma cell lines examined and suggest that c-kit may also play a similar role in neuroblastoma growth regulation in vivo. Simultaneous expression of SCF and c-kit mRNA in both neuroblastoma cell lines and tumors implies that c-kit may act as part of an autocrine growth loop in conjunction with endogenous production of SCF in this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.