Abstract

Contractile cells in the mammalian lung develop in close association with the outgrowing stem bronchi. Fully differentiated smooth muscle cells are typically found in proximal regions, residing in the substantial muscular walls of the major airways and blood vessels. More distally, cells expressing markers of differentiated smooth muscle cells to a variable degree, and which may therefore possess contractile properties, are to be found scattered around the interstitium. We have investigated the temporal and spatial distribution of smooth muscle lineage markers (smooth muscle myosin mRNA) and of those indicative of contractile function (metavinculin mRNA) in the murine lung. In the smooth muscle layers of the bronchi and major blood vessels, these genes are expressed from the onset of pulmonary budding, concurrently with the appearance of alpha-smooth muscle actin and calponin proteins. During fetal development, smooth muscle-associated genes and proteins are restricted to this committed smooth muscle population. The first signs of myofibroblast or pericyte differentiation become manifest perinatally, when their expression of alpha-smooth muscle actin escalates. In the adult lung, such cells may be readily pin-pointed by their positive reaction for metavinculin mRNA, but, at maturity, they do not always coexpress alpha-smooth muscle actin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call