Abstract

The mechanisms underlying vascular complications in autosomal-dominant polycystic kidney disease (ADPKD) have not been fully elucidated. However, molecular components altered in Pkd mutant vascular smooth muscle cells (VSMCs) are gradually being identified. Pkd2(+/-) arterial smooth muscles show elevated levels of (1) phenylephrine (PE)-induced, Ca(2+)-independent vasocontraction and (2) smooth muscle alpha-actin (SMA) expression. As these two processes are heavily influenced by RhoA signaling and by cellular filamentous-to-globular (F/G)-actin dynamics, we examined PE-induced changes in RhoA activation and the F/G-SMA ratio in wild-type (wt) and Pkd2(+/-) VSMCs; we further tested the hypothesis that the abnormal response to PE and the resultant elevation in the F/G-SMA ratio contribute to the exuberant SMA expression in Pkd2(+/-) VSMCs. GTP-RhoA and F/G-SMA in mouse aortic media and primary cultured VSMCs were determined using RhoA activation and in vivo F-to-G-actin assays. Myocardin-related transcription factor-A (MRTF-A) (SMA transcription coactivator) was localized by immunofluorescence, nuclear MRTF-A quantified by western analysis using nuclear extracts and SMA expression by luciferase reporter assay. PE induced a >3-fold higher RhoA activation in Pkd2(+/-) than in wt VSMCs and higher levels of downstream p-LIMK and p-cofilin. Moreover, Pkd2(+/-) VSMCs showed a higher baseline and PE-induced F/G-SMA ratio. The F/G-SMA elevation enhanced nuclear translocation of MRTF-A, which upregulated SMA transcription. In summary, PE-induced RhoA hyperactivation and defects in F-to-G SMA balance likely have a role in the abnormal vasocontraction and SMA expression in Pkd2(+/-) arteries. These defects could potentially contribute to the genesis of vascular complications in ADPKD, thus providing new areas for further research and therapeutic targeting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call