Abstract

S-locus inhibitor gene (Sli), which can inhibit gametophytic self-incompatibility in diploid potatoes and alter self-incompatible to self-compatible plants, was introduced by crossing into 32 diploid genotypes as females and its expression in the F1 and S1 progenies was investigated. We found that the expression of self-compatibility in the F1 hybrid progeny depended largely upon the female genotypes and partly upon the male genotypes (=Sli gene donor clones). Successful females produced hybrid plants, in which 67.1% of self-pollinated plants set S1 seeds. By second selfing upon the S1 plants, an average of 44.2% of self-pollinated plants were self-compatible. Unsuccessful females produced hybrids, most of which were self-incompatible or male-sterile. Restriction fragment patterns of chloroplast DNA (ctDNA) were able to distinguish successful females (S- or A-type ctDNA) from unsuccessful females (W- or T-type ctDNA). A ctDNA high-resolution marker analysis using seven microsatellites and H3 marker supported a higher degree of differentiation between the two groups of ctDNA types and implied a possible interaction between the cytoplasm and Sli gene function. However, it has been known that the cytoplasm having T-type ctDNA and that derived from Solanum demissum (haplotype 26 of W-type ctDNA) cause male sterility, and the present case with unsuccessful females were likely caused by male sterility rather than the failure of Sli gene function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.