Abstract

Recently it has been reported that boron (B) deficiency increases the expression of Nicotiana tabacum asparagine synthetase (AS) gene in roots, and that AS might play a main role as a detoxifying mechanism to convert ammonium into asparagine. Interestingly, glutamate dehydrogenase (GDH) genes, Ntgdh-NAD;A1 and Ntgdh-NAD;B2, were up-regulated when tobacco roots were subjected to B deprivation for 8 and 24h. In addition, aminating and deaminating GDH (EC 1.4.1.2) activities were higher in B-deficient than in B-sufficient plants after 24h of B deficiency. Ammonium concentrations were kept sufficiently low and with similar values in B-deficient roots when compared to control. Glucose and fructose contents decreased after 24h of B deprivation. This drop in hexoses, which was corroborated by metabolomic analysis, correlated with higher GDH gene expression. Furthermore, metabolomic profiling showed that concentrations of several organic acids, phenolics, and amino acids increased after 24h of B deficiency. Our results suggest that GDH enzyme plays an important role in metabolic acclimation of tobacco roots to B deprivation. A putative model to explain these results is proposed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.