Abstract
Biochar can reduce Cd uptake by plants, thereby reducing its biotoxicity, but the mechanisms involved at the subcellular level have not been thoroughly elucidated. In this work, we explored the effect of maize straw biochar on Cd accumulation by Bidens pilosa L. and its mechanism at subcellular levels. After 90 days of potting experiment, the subcellular fractions were extracted by differential centrifugation, and the polysaccharide fractions of root cell walls were extracted by leaching centrifugation, and then the Cd content of each fraction was determined. Results showed that Cd was preferentially distributed in cell walls of three organs. Additionally, biochar addition resulted in a greater distribution of Cd from cell wall to soluble fractions and organelles in stems. These results suggested that cell wall immobilization and intracellular compartmentalization were critical detoxification mechanisms tackling Cd stress with biochar addition of Bidens pilosa L. Pectin was the main sink where Cd was stored. And galacturonic acid content in pectin occupied the highest ratio among the three polysaccharide fractions. After biochar addition, in hemicellulose the change of Cd content was consistent with the change of galacturonic acid content. These results suggested that the galacturonic acid in hemicellulose played an important role in Cd binding. Biochar addition reduced the bioavailability of soil Cd and improved the growth environment, thus inducing Bidens pilosa L. to change the composition of root cell wall in response to Cd stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.