Abstract

Newly synthesized presynaptic integral membrane proteins in neurons are transported in precursor vesicles from the site of protein biosynthesis in the cell body by fast axonal flow to the presynaptic terminal. We followed the path that presynaptic proteins travel on the way to their central targets of the highly ordered primary visual pathway of the chick and analyzed the developmental changes in the expression of synaptic vesicle protein 2 (SV2), synaptotagmin, and syntaxin. Immunofluorescences revealed that: (1) the onset of protein expression in the retinal ganglion cells occurs in a central to peripheral developmental pattern from embryonic day 4 (E4) onward; (2) the proteins were found first in the inner and later in the outer plexiform layer of the retina; and (3) they were redistributed from the photoreceptor inner segments and cell bodies to the terminals in the outer plexiform layer. From E4 onward, immunopositive axons for SV2, synaptotagmin, and syntaxin were found in the optic nerve, disappearing after E9 for SV2 and synaptotagmin. The optic tract was stained for SV2 and synaptotagmin between E7 and E12, for syntaxin until the posthatching period. Finally, immunoreactivities for the investigated proteins were present at the surface of the tectum from E8 onward, when first retinal axons arrived there. The present study revealed that SV2 and synaptotagmin, but not syntaxin, are, expressed in a transient wave that follows the advancement of optic axons and the proteins towards the optic tectum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.