Abstract
Neuronal plasticity and neurogenesis occur in the adult hippocampus and in other brain structures such as the olfactory bulb and often involve the neural cell adhesion molecule NCAM. During an olfactory associative discrimination learning task, NCAM polysialylation triggers neuronal plasticity in the adult hippocampus. The PST enzyme likely modulates this polysialylation, but not STX, a second sialyltransferase. How the two polysialyltransferases are involved in the adult olfactory bulb remains unknown. We addressed this question by investigating the effect of olfactory associative learning on plasticity and neurogenesis. After a hippocampo-dependent olfactory associative task learning, we measured the expression of both PST and STX polysialyltransferases in the olfactory bulbs of adult rats using quantitative PCR. In parallel, immunohistochemistry was used to evaluate both NCAM polysialylation level and newly-born cells, with or without learning. After learning, no changes were observed neither in the expression level of PST and NCAM polysialylation, nor in STX gene expression level and newly-born cells number in the olfactory bulb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.