Abstract

Objective Osteopontin (OPN) is an extracellular matrix protein that has been implicated in the interactions between tumor cells and host matrix, including those involved in invasion and spread of tumor cells. Because joint destruction in rheumatoid arthritis (RA) is mediated by the invasive growth of synovial tissue through its attachment to cartilage, we examined the expression of OPN in the synovia of patients with RA and the effect of OPN on the production of collagenase 1 in rheumatoid synovial fibroblasts and articular chondrocytes. Methods The expression of OPN messenger RNA (mRNA) and protein in synovia from 10 RA patients was examined by in situ hybridization and immunohistochemistry. Synovial fibroblasts from RA patients and articular chondrocytes from patients without joint disease were cultured in the presence of various concentrations of OPN, and levels of collagenase 1 in the culture supernatants were measured by enzyme-linked immunosorbent assay. Results The expression of OPN mRNA and protein was observed in 9 of 10 specimens obtained from patients with RA. OPN was expressed in the synovial lining and sublining layer and at the interface of cartilage and invading synovium. Double labeling revealed that the majority of OPN-expressing cells were positive for the fibroblast-specific enzyme prolyl 4-hydroxylase and negative for the macrophage marker CD68, while only a few, single OPN-expressing cells were positive for CD68 at sites of synovial invasion into cartilage. OPN staining was not observed in lymphocytic infiltrates or leukocyte common antigen (CD45)–positive cells. Three of 3 cultures of human articular chondrocytes secreted detectable basal amounts of collagenase, with a dose-dependent increase upon OPN stimulation, while synovial fibroblast cultures produced much lower levels of collagenase, with only 2 of 4 fibroblast cultures responding in a dose-dependent manner. Conclusion These findings suggest that OPN produced by synovial fibroblasts in the synovial lining layer and at sites of cartilage invasion not only mediates attachment of these cells to cartilage, but also contributes to matrix degradation in RA by stimulating the secretion of collagenase 1 in articular chondrocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.