Abstract

We examined, in rats, the expression of osteocalcin and Jun D in the early stage of reactionary dentin formation after tooth preparation and the accompanying morphological changes. Reverse transcription/polymerase chain reaction analysis revealed strong expression of osteocalcin mRNA in pulp tissue at 2 and 3 days post-preparation compared with that in control teeth. Light microscopy demonstrated that, at the dentin-pulp interface, damaged odontoblasts were detached from the dentin matrix immediately after preparation, with neutrophils lining the dental surface after 1 day. After 2-3 days, differentiated odontoblasts appeared at the interface. Reactionary dentin with tubular structures was formed under the cavity after 10 days. Immunoelectron microscopy showed that trace amounts of osteocalcin were expressed in odontoblasts at 2 days post-preparation, and abundant osteocalcin was found in the highly developed Golgi apparatus and granules at 3 days post-preparation. Osteocalcin was also found on type I collagen fibrils in newly formed predentin. The existing dentinal tubules were filled with osteocalcin-coated type I collagen fibrils. We observed, by immunohistochemistry, that Jun D was temporally expressed in the nuclei of the odontoblasts at 1 and 2 days post-preparation. However, no Jun D was found in the dental pulp cells at any other time or in control teeth. Thus, osteocalcin expression is correlated with reactionary dentin formation, and Jun D is associated with osteocalcin expression in odontoblasts. Osteocalcin may also serve as an obturator of the dentinal tubules to protect dental pulp vitality against external irritants after preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.