Abstract

Abstract Background After indirect capping, injured odontoblasts generate reactionary dentin, whereas after direct capping of a pulp exposure pulp, cells stimulate the formation of reparative dentin. The aim of this study was to evaluate and compare the effects of two direct capping agents on pulp tissue reactions: Hydrogel (a bovine serum albumin (BSA)/glutaraldehyde,) and Dycal (a calcium hydroxide-based capping agent). Methods In 6-week-old male Sprague–Dawley rats, occlusal cavities were drilled in the first maxillary molars, and the pulps were exposed. In one of the groups, 24 right molars were capped with Hydrogel (G1), whereas in the other group 24 M were capped with Dycal (G2). After 1 to 4 weeks, the rats were anaesthetized intraperitoneally (six rats per group) and perfused intracardiacally with 4 % paraformaldehyde fixative. Maxillary molar’s blocks were demineralized with a 4.13 % EDTA solution, embedded in paraffin, and the sections were histologically stained. Measurements of the thickness of reactionary dentin and area of inflammation were measured with ImageJ software. Results were compared with Kruskal Wallis and Mann Whitney U tests at p = 0.05. Results One week after Dycal capping, a statistically significant large number of aggregates of pulp cells enlightened pulpal inflammation compared to Hydrogel. At 2–3 weeks, reactionary dentin formation was increased at the periphery of the pulp chamber. After 4 weeks, a dentinal bridge sealed partially the pulp exposure, while tunnel defects persisting across reparative osteodentin. In contrast, 1 week after Hydrogel capping, inflammation was barely detectable. Hydrogel induced the massive apposition of reactionary dentin at the pulp periphery, and reparative dentin was developing within the pulp. The degradation of Hydrogel releases glutaraldehyde acting on pulp cells as a fixative and consequently favoring BSA bioactivity. Conclusion After Hydrogel capping, nemosis stimulates pulp mineralization, improving reactionary and reparative dentin formation. In contrast, the highly alkaline compound Dycal produced inflammation within the pulp. The differences between the two capping agents suggest that Hydrogel might present some clinical advantages over Dycal.

Highlights

  • After indirect capping, injured odontoblasts generate reactionary dentin, whereas after direct capping of a pulp exposure pulp, cells stimulate the formation of reparative dentin

  • Indirect capping produced reactionary dentin, while direct pulp capping led to the formation of reparative dentin by a dentinal bridge, closing almost the whole pulp exposure

  • To conclude, the formation of reactionary and reparative dentin was enhanced by Hydrogel capping compared to Dycal capping

Read more

Summary

Introduction

After indirect capping, injured odontoblasts generate reactionary dentin, whereas after direct capping of a pulp exposure pulp, cells stimulate the formation of reparative dentin. The aim of this study was to evaluate and compare the effects of two direct capping agents on pulp tissue reactions: Hydrogel (a bovine serum albumin (BSA)/glutaraldehyde,) and Dycal (a calcium hydroxide-based capping agent). Odontoblasts and cells from the subodontoblastic Hoehl’s layer were implicated in the formation of reactionary dentin. Indirect capping induced the formation of bonelike (osteo) dentin. Deeper lesions combined with pulp exposure contributed to the construction of reparative dentin by pulp cells. Indirect capping produced reactionary dentin, while direct pulp capping led to the formation of reparative dentin by a dentinal bridge, closing almost the whole pulp exposure. Adjacent to the necrotic zone, a reparative dentinal bridge starts to be formed (Tronstad 1974)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.