Abstract

BackgroundSegmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce.ResultsHere we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs.ConclusionsAlthough the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor.

Highlights

  • Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster

  • An exception is seen in the centipede Strigamia maritima, where posterior segments are initially determined in a two-segmental periodicity, revitalizing the question of whether an ancestral pair rule mechanism might exist in arthropods [17,18]

  • Transcripts and phylogenetic analysis We recovered gene fragments with significant similarity to the even-skipped, runt, sloppy-paired, odd-skipped and odd-paired genes from Drosophila melanogaster and other arthropods that we designated as Glomeris even-skipped (Gm-eve), Glomeris runt (Gm-run), Glomeris sloppy-paired (Gm-slp), Glomeris odd-skipped (Gm-odd) and Glomeris odd-paired (Gm-opa), respectively (Figure 1)

Read more

Summary

Introduction

Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. Later in the extended germ band stage secondary stripes of many PRGs intercalate between the primary stripes and the genes function as segment polarity genes at this time of development [4,5] This mode of segmentation where all segments are produced simultaneously (the so-called longgerm developmental mode) is derived within the insects and is apparently correlated with the high speed of Drosophila embryonic development [6,7]. In the majority of arthropods (including many holometabolous insects) only the anterior segments form simultaneously, and all posterior segments are formed sequentially from a posterior segment addition zone (SAZ) [8] This mode of segment formation is called the short-germ developmental mode. An exception is seen in the centipede Strigamia maritima, where posterior segments are initially determined in a two-segmental periodicity, revitalizing the question of whether an ancestral pair rule mechanism might exist in arthropods [17,18]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.