Abstract

This review concerns the pattern of expression and regulation of myosin heavy chain (MHC) isoforms in intrafusal fibres of rat muscle spindles detected by immunocytochemistry. The three types of intrafusal fibres--nuclear bag1, nuclear bag2, and nuclear chain fibres--are unique in co-expressing several MHCs including special isoforms such as slow tonic and alpha cardiac-like MHC and isoforms typical of muscle development, such as embryonic and neonatal MHC. The distinct intrafusal fibre types appear sequentially during rat hind limb development, the nuclear bag2 precursors being first identifiable at 17-18 days in utero as the only primary myotubes expressing slow tonic MHC. Sensory innervation is required for the expression of "spindle-specific" MHC isoforms. Motor innervation contributes to the diversity in distribution of the different MHCs along the length of the nuclear bag fibres. It is suggested that unique populations of myoblasts are destined to become intrafusal fibres during development in the rat hind limb muscles and that the regional heterogeneity in MHC expression is related both to sensory and motor innervation and to the properties of the myoblast lineages. These distinct features make intrafusal fibres an attractive in situ model for investigating myogenesis, myofibrillogenesis, and the mechanisms regulating MHC expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call