Abstract

The present study aimed to explore the expression of microRNA (miRNA or miR) in drug-resistant and drug-sensitive ovarian cancer cell lines, and to seek the potential therapeutic target of ovarian cancer drug-resistant mechanism in order to improve drug resistance by altering miRNA levels. The drug-resistant characteristics of SKOV3/DDP, SKOV3, COC1/DDP and COC1 cell lines were studied. The miRNAs that were differentially expressed between cisplatin-resistant cells and its parental cells in ovarian cancer were screened with a miRNA chip. The effect of miRNAs was detected, and their drug-resistant mechanism was investigated by transfection and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide methods. Among the expression screening of miRNAs, 41 mRNAs, including Homo sapiens (hsa)-miR-30a-5p and hsa-miR-34c-5p, were highly expressed in the drug-resistant cells, whereas 44 miRNAs, including hsa-miR-96-5p and hsa-miR-200c-3p, were lowly expressed. The expression levels of hsa-miR-30a-5p in two types of ovarian cancer chemotherapy-resistant cell lines were significantly higher than those in chemotherapy-sensitive cell lines, which was associated with ovarian cancer chemotherapy resistance. In conclusion, high expression of miRNA-30a-5p was able to promote cell growth and colony forming ability, and enhance cell migration and invasion. Thus, miRNA-30a-5p is expected to become a meaningful novel target for ovarian cancer resistant treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call