Abstract
A locally acting growth restraining feedback loop has been identified in the murine embryonic growth plate in which the level of parathyroid hormone-related peptide (PTHrP) expression regulates the pace of chondrocyte differentiation. To date, it is largely unknown whether this feedback loop also regulates the pace of chondrocyte differentiation in the growth plate after birth. We therefore characterized the spatio-temporal expression of Indian hedgehog (IHH), PTHrP, and their receptors in the postnatal growth plate from female and male rats of 1, 4, 7, and 12 weeks of age. These stages are representative for early life and puberty in rats. Using semiquantitative reverse-transcription polymerase chain reaction (RT-PCR) on growth plate tissue, IHH and components of its receptor complex, patched (PTC) and smoothened (SMO), PTHrP and the type I PTH/PTHrP receptor messenger RNA (mRNA) were shown at all ages studied irrespective of gender. Using in situ hybridization, IHH, PTHrP, and PTH/PTHrP receptor mRNA were detected in prehypertrophic and hypertrophic chondrocytes in both sexes during development. In addition, especially in the younger age groups, faint expression of PTH/PTHrP receptor mRNA also was shown in stem cells and proliferative chondrocytes. Immunohistochemistry confirmed the observations made with in situ hybridization, by showing the presence of IHH, PTC, PTHrP, and PTH/PTHrP receptor protein in prehypertrophic and hypertrophic chondrocytes. In addition, staining for hedgehog, PTC, and PTHrP also was observed in growth plate stem cells. No differences in staining patterns were observed between the sexes. Furthermore, no mRNA or protein expression of the mentioned factors was detected in the perichondrium. Our data suggest that in contrast to the proposed feedback loop in the early embryonic growth plate, which requires the presence of the perichondrium, a feedback loop in the postnatal growth plate can be confined to the growth plate itself. In fact, two loops might exist: (1) a loop confined to the transition zone and early hypertrophic chondrocytes, which might in part be autocrine and (2) a loop involving the growth plate stem cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.