Abstract
BackgroundThe full-length mammalian homologs of groucho, Tle1, 2, 3, and 4, act as transcriptional corepressors and are recruited by transcription factors containing an eh1 or WRPW/Y domain. Many transcription factors critical to pancreas development contain a Gro/TLE interaction domain and several have been shown to require Gro/TLE interactions for proper function during neuronal development. However, a detailed analysis of the expression patterns of the Gro/TLE proteins in pancreas development has not been performed. Moreover, little is known about the ability of Gro/TLE proteins to interact with transcription factors in the pancreas.ResultsWe describe the expression of Gro/TLE family members, and of 34 different transcription factors that contain a Gro/TLE interaction motif, in the pancreas utilizing nine SAGE libraries created from the developing and adult pancreas, as well as the GenePaint database. Next, we show the dynamic expression of Tle1, 2, 3, 4, 5 and 6 during pancreas development by qRT-PCR. To further define the cell-type specificity of the expression of these proteins we use immunofluorescence to co-localize them with Pdx1 at embryonic day 12.5 (E12.5), Ngn3 at E14.5, Pdx1, Nkx2-2, Insulin, Glucagon, Pancreatic polypeptide and Somatostatin at E18.5, as well as Insulin and Glucagon in the adult. We then show that Tle2 can interact with Nkx2-2, Hes1, Arx, and Nkx6-1 which are all critical factors in pancreas development. Finally, we demonstrate that Tle2 modulates the repressive abilities of Arx in a β-cell line.ConclusionAlthough Tle1, 2, 3, and 4 show overlapping expression in pancreatic progenitors and in the adult islet, the expression of these factors is restricted to different cell types during endocrine cell maturation. Of note, Tle2 and Tle3 are co-expressed with Gro/TLE interaction domain containing transcription factors that are essential for endocrine pancreas development. We further demonstrate that Tle2 can interact with several of these factors and that Tle2 modulate Arx's repressive activity. Taken together our studies suggest that Gro/TLE proteins play a role in the repression of target genes during endocrine cell specification.
Highlights
The full-length mammalian homologs of groucho, Tle1, 2, 3, and 4, act as transcriptional corepressors and are recruited by transcription factors containing an eh1 or WRPW/Y domain
Tle2 and Tle3 are co-expressed with Groucho/Transducinlike enhancer of split (Gro/TLE) interaction domain containing transcription factors that are essential for endocrine pancreas development
Taken together our studies suggest that Gro/TLE proteins play a role in the repression of target genes during endocrine cell specification
Summary
The full-length mammalian homologs of groucho, Tle , and 4, act as transcriptional corepressors and are recruited by transcription factors containing an eh or WRPW/Y domain. Many of the transcription factors important in pancreas development are, or are thought to act as, repressors of target genes. During pancreas development Nkx acts as a context dependent transcriptional activator or repressor, activating its own transcription while more broadly repressing gene expression [5,6]. Nkx is a repressor of Dbx in neuronal development [7] In each of these cases, both in the pancreas and in neuronal development, transcription factor mediated repression of target genes requires the recruitment of cofactors. For many of these transcription factors homologs of Groucho, called the Groucho/Transducinlike enhancer of split (Gro/TLE) family, fulfill this role [7,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.