Abstract

The study investigated the effects of dietary administration of β-glucan on aquaporins and antioxidative & immune gene expression in endangered golden mahseer, Tor putitora juveniles, exposed to ammonia stress. For that, fish were fed experimental diets having 0 (control/basal), 0.25, 0.5, and 0.75% β-d-glucan for five weeks and then exposed to ammonia (10 mgL−1 total ammonia nitrogen) for 96 h. Administration of β-glucan differentially influenced the mRNA expression of aquaporins, anti-oxidative, and immune genes in ammonia-exposed fish. For instance, the transcript abundance of catalase and glutathione-s-transferase in gill varied significantly among the treatment groups, with the lowest levels in 0.75% β-glucan fed groups. At the same time, their hepatic mRNA expression was similar. Congruently, transcript abundance of inducible nitric oxide synthase considerably decreased in the β-glucan fed ammonia-challenged fish. Conversely, the relative mRNA expression of various immune genes viz., major histocompatibility complex, immunoglobulin light chain, interleukin 1-beta, toll-like receptors (tlr4 and tlr5) and complement component 3 remained largely unchanged in ammonia-exposed mahseer juveniles that were fed with graded levels of β-glucan. On the other hand, a significantly lower transcript level of aquaporins 1a and 3a was noticed in the gill of glucan-fed fish compared to ammonia-exposed fish that received the basal diet. However, branchial aquaporin 3b remained unaltered. Altogether, this study showed that dietary intake of 0.75% β-glucan improved resistance to ammonia stress to a certain degree, probably through activating anti-oxidative system and reducing brachial ammonia uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.