Abstract
BackgroundA through gut is present in almost all metazoans, and most likely represents an ancient innovation that enabled bilaterian animals to exploit a wide range of habitats. Molecular developmental studies indicate that Fox and GATA regulatory genes specify tissue regions along the gut tube in a broad diversity of taxa, although little is known about gut regionalization within the Lophotrochozoa. In this study, we isolated FoxA and GATA456 orthologs and used whole mount in situ hybridization during larval gut formation in two marine worms: the segmented, polychaete annelid Chaetopterus, which develops a planktotrophic larva with a tripartite gut, and the non-segmented sipunculan Themiste lageniformis, which develops a lecithotrophic larva with a U-shaped gut.ResultsFoxA and GATA456 transcripts are predominantly restricted to gut tissue, and together show regional expression spanning most of the alimentary canal in each of these lophotrochozoans, although neither FoxA nor GATA456 is expressed in the posterior intestine of Chaetopterus. In both species, FoxA is expressed at the blastula stage, transiently in presumptive endoderm before formation of a definitive gut tube, and throughout early larval development in discrete foregut and hindgut domains. GATA456 genes are expressed during endoderm formation, and in endoderm and mesoderm associated with the midgut in each species. Several species-specific differences were detected, including an overlap of FoxA and GATA456 expression in the intestinal system of Themiste, which is instead complimentary in Chaetopterus. Other differences include additional discrete expression domains of FoxA in ectodermal trunk cells in Themiste but not Chaetopterus, and expression of GATA456 in anterior ectoderm and midgut cells unique to Chaetopterus.ConclusionsThis study of gene expression in a sipunculan contributes new comparative developmental insights from lophotrochozoans, and shows that FoxA and GATA456 transcription factors are part of an ancient patterning mechanism that was deployed during early evolution of the metazoan through gut. The common utilization of FoxA and GATA456 throughout gut formation by species with contrasting life history modes indicates that both genes are core components of a gut-specific gene regulatory network in spiralians. Despite a highly conserved pattern of early development, and probably similar ontogenic origins of gut tissue, there are molecular differences in gut regionalization between lophotrochozoan species.
Highlights
A through gut is present in almost all metazoans, and most likely represents an ancient innovation that enabled bilaterian animals to exploit a wide range of habitats
Posterior probability (PP) values for internal nodes within each unrooted cladogram were moderately supportive for gene-specific associations between taxa; there was 100% PP for a distinct FoxA family and two GATA subclasses, which strongly supports the respective orthology assignments for the genes we examine in this study
The posterior end of the larval gut in Themiste is initially positioned midway along the dorsal trunk body wall, and both the intestine and larval body elongate posterior to the anal region resulting in the U-shaped gut in adults, a morphology that is considered to be an important adaptation among tubular burrow-dwelling sipunculans [57]
Summary
A through gut is present in almost all metazoans, and most likely represents an ancient innovation that enabled bilaterian animals to exploit a wide range of habitats. We isolated FoxA and GATA456 orthologs and used whole mount in situ hybridization during larval gut formation in two marine worms: the segmented, polychaete annelid Chaetopterus, which develops a planktotrophic larva with a tripartite gut, and the non-segmented sipunculan Themiste lageniformis, which develops a lecithotrophic larva with a U-shaped gut. In a previous study [10], we described morphologic and molecular aspects of gut development in the marine polychaete, Capitella teleta Blake, Grassle & Eckelbarger 2009, known for years as Capitella sp. We extend that work with developmental data obtained from two additional marine worms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.