Abstract

This study aimed to establish the influence of biofilm from clinical isolates of Candida albicans on fluconazole resistance, focusing on efflux pumps and azole-targeted enzymes. Twenty-three C. albicans clinical isolates were collected from two hospitals in Shanghai, China. Antifungal susceptibility tests were performed on biofilm and planktonic cells. A crystal violet assay was used to monitor biofilm growth. Real-time RT-PCR was performed to quantify the expression of the transporter-related genes MDR1, CDR1, and CDR2 as well as ERG11, a gene encoding an enzyme targeted by antifungal drugs. Fluconazole resistance was shown to increase in biofilm in a time-dependent manner. No significant differences were observed between different strains of C. albicans. Genes encoding efflux pumps were overexpressed in early stages of biofilm formation and could also be induced by fluconazole. While ERG11 was not upregulated in biofilm, it was overexpressed upon the addition of fluconazole to biofilm and planktonic cells. Gene expression also appeared to be related to the original genotype of the strain. The upregulation of genes encoding efflux pumps demonstrates their role in the development of fluconazole resistance during the early stages of C. albicans biofilm formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.