Abstract
Background: Lead is one of the sustainable metals with devastating effects on many tissues. This study, examined the adverse effect of lead poisoning on the gene expression of collagen type II and osteocalcin by mesenchymal stem cells (MSCs) cultured in chondrogenic and osteogenic media, respectively. Methods: We used 18 male Wistar rats, divided in 3 groups. In addition to libitum feed as the control, treatment I and treatment II groups were fed by distilled water, distilled water with a dose of 50 ppm lead acetate II and distilled water with a dose of 100 ppm lead acetate II, respectively, over a 2-month period. The MSCs of rat femur were isolated in DMEM medium. After the second passage, the media were replaced separately with chondrogenic and osteogenic media over another 21 days. Then, Collagen Type II and Osteocalcin genes expression were investigated by real time PCR. Results: Collagen Type II and Osteocalcin genes expression in treatments I and II groups showed meaningful decreases compared with that of the control group. Also, the concentration of collagen type II in treatment II group in chondrogenic medium was significantly reduced compared with Osteocalcin concentration in osteogenic medium. Conclusion: We found that poisoning with lead and its accumulation at doses of 50 and 100 ppm in femoral bone marrow of rats decreased the expression of the collagen type II and osteocalcin genes in MSCs and in the chondrogenic and osteogenic media, respectively.
Highlights
Mesenchymal stem cells (MSCs) are totipotent, with the ability to produce cell lines [1]
One of the prominent features of mesenchymal stem cells is that they are able to differentiate into skeletal cell lines, i.e., bone, cartilage and fat cells
We examined the effects of lead acetate II in the diet destructive effect or weakening these two materials or on the expression of Collagen type II and Osteocalcin related signaling pathways
Summary
Mesenchymal stem cells (MSCs) are totipotent, with the ability to produce cell lines [1] These cells are in an inactive and resting condition and they are activated as a result of in cellular injury. This feature has significant importance in tissue engineering and repair. This study, examined the adverse effect of lead poisoning on the gene expression of collagen type II and osteocalcin by mesenchymal stem cells (MSCs) cultured in chondrogenic and osteogenic media, respectively. Conclusion: We found that poisoning with lead and its accumulation at doses of 50 and 100 ppm in femoral bone marrow of rats decreased the expression of the collagen type II and osteocalcin genes in MSCs and in the chondrogenic and osteogenic media, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.