Abstract

AimsCell adhesion molecule 1 (CADM1) mediates interepithelial adhesion and is upregulated in crowded epithelial monolayers. This study aimed to examine CADM1 expression in the human endometrium of proliferative and secretory phases, and its transcriptional regulation in terms of estrogen stimuli and higher cellularity. Main methodsCADM1 immunohistochemistry was conducted on endometrial tissues from women in their 40s and adult mice subcutaneously injected with estradiol following ovariectomy. Dual-luciferase reporter assays were conducted using human endometrial HEC-50B and HEC-1B cells and reporter plasmids harboring the human CADM1 3.4-kb promoter and its deleted and mutated forms. Cells were transfected with estrogen receptor α cDNA and reporter plasmids, and treated with estradiol before luciferase activity measurement. Key findingsImmunohistochemistry revealed that CADM1 was clearly expressed on the lateral membranes of the simple columnar glandular cells in the proliferative phase, but not in the secretory phase, from both women and the mouse model. The glandular cell density increased two-fold in the proliferative phase. Reporter assays identified three Sp1-binding sites as estradiol-responsive elements in the proximal region (from −223 to −84) of the transcription start site (+1) in HEC-50B cells. When the cell culture was started at eight-fold higher cell density, the CADM1 3.4-kb promoter was transactivated at a two-fold higher level in HEC-50B cells. This cell density effect was not detected for the CADM1 2.3-kb or 1.6-kb promoter. SignificanceTwo (proximal and distal) promoter regions are suggested to function additively to transactivate CADM1 in endometrial glandular cells that crowd in the proliferative phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.