Abstract

In adult mammals, new neurons in the subventricular zone (SVZ) of the lateral ventricle (LV) migrate tangentially through the rostral migratory stream (RMS) to the olfactory bulb (OB), where they mature into local interneurons. Using a monoclonal antibody for the beta-amyloid precursor protein (APP) (mAb 22C11), which is specific for the amino-terminal region of the secreted form of APP and recognizes all APP isoforms and APP-related proteins, immunoreactivity was detected in specific subpopulations of cells in the SVZ and RMS of the adult rat forebrain. In the SVZ, APP-like immunoreactivity was detected in the ependymal cells lining the LV and some of the subependymal cells. The latter were regarded as astrocytes, because they were positive for the glial markers, S-100 protein (S-100) and glial fibrillary acidic protein (GFAP). APP-like immunoreactive astrocytes exhibited strong labelling of the perinuclear cytoplasm and often possessed a long, fine process similar to that found with radial glia. The process extended to an APP-like immunoreactive meshwork in the RMS that consisted of cytoplasmic processes of astrocytes forming 'glial tubes'. Double-immunofluorescent labelling with a highly polysialylated neural cell adhesion molecule (PSA-NCAM) confirmed that the APP-like immunoreactive astrocytes in the SVZ and meshwork in the RMS made close contact with PSA-NCAM-immunopositive neuroblasts, suggesting an interaction between APP-containing cells and neuroblasts. This region of the adult brain is a useful in vivo model to investigate the role of APP in neurogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.