Abstract
BackgroundAlthough electroacupuncture (EA) relieves various types of pain, individual differences in the sensitivity to EA analgesia have been reported, causing experimental and clinical difficulties. Our functional genomic study using cDNA microarray identified that 5’-AMP-activated protein kinase (AMPK), a well-known factor in the regulation of energy homeostasis, is the most highly expressed gene in the hypothalamus of the rats that were sensitive to EA analgesia (“responder”), as compared to the rats that were insensitive to EA analgesia (“non-responder”). In this study, we investigated the causal relationship between the hypothalamic AMPK and the individual variation in EA analgesia.MethodsSprague-Dawley (SD) rats were divided into the responder and the non-responder groups, based on EA-induced analgesic effects in the tail flick latency (TFL) test, which measures the latency of the tail flick response elicited by radiant heat applied to the tail. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to quantify the expression levels of AMPK mRNA in the hypothalamus of the responder and non-responder rats. Further, we examined whether viral manipulation of the AMPK expression in the hypothalamus modulates EA analgesia in rats.ResultsThe real-time RT-PCR analysis showed that mRNA expression levels of AMPK in the hypothalamus of the responder rats are significantly higher than those of the non-responder rats, validating the previous microarray results. Microinjection of dominant negative (DN) AMPK adenovirus, which inhibits AMPK activity, into the rat hypothalamus significantly attenuates EA analgesia (p < 0.05), whereas wild type (WT) AMPK virus did not affect EA analgesia (p > 0.05).ConclusionsThe present results demonstrated that levels of AMPK gene expression in the rat hypothalamus determine the individual differences in the sensitivity to EA analgesia. Thus, our findings provide a clinically useful evidence for the application of acupuncture or EA for analgesia.
Highlights
Electroacupuncture (EA) relieves various types of pain, individual differences in the sensitivity to EA analgesia have been reported, causing experimental and clinical difficulties
Using cDNA microarray study in the rat hypothalamus, a center of the descending pain inhibitory system, we previously identified several genes that mediate the individual variation in the sensitivity to EA analgesia [12]: The expression levels of 5’-AMP-activated protein kinase (AMPK), dopamine beta-hydroxylase (DBH), acetylcholinesterase T subunit (AChET) in the hypothalamus of the responder rats were significantly higher than those of the non-responder rats
Measurement of AMPK mRNA levels in the rat hypothalamus by real-time reverse transcription-polymerase chain reaction (RT-PCR) For each group, 4 subjects were rapidly sacrificed and the hypothalamus was separated
Summary
Electroacupuncture (EA) relieves various types of pain, individual differences in the sensitivity to EA analgesia have been reported, causing experimental and clinical difficulties. Our functional genomic study using cDNA microarray identified that 5’-AMP-activated protein kinase (AMPK), a well-known factor in the regulation of energy homeostasis, is the most highly expressed gene in the hypothalamus of the rats that were sensitive to EA analgesia (“responder”), as compared to the rats that were insensitive to EA analgesia (“non-responder”). Using cDNA microarray study in the rat hypothalamus, a center of the descending pain inhibitory system, we previously identified several genes that mediate the individual variation in the sensitivity to EA analgesia [12]: The expression levels of 5’-AMP-activated protein kinase (AMPK), dopamine beta-hydroxylase (DBH), acetylcholinesterase T subunit (AChET) in the hypothalamus of the responder rats were significantly higher than those of the non-responder rats. The post-microarray validation of AMPK and its functional role in EA analgesia have not been studied, despite the highest expression of AMPK in the responder rats as compared to the nonresponders among the above three genes
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have