Abstract
Death-associated protein (DAP) kinase is a novel regulator of cell death whose in vivo target(s) and role in neuronal cell death remain uncertain. Since DAP kinase has been implicated in p53-mediated apoptosis, a pathway activated following epileptic brain injury, we examined the relationship between DAP kinase and p53 following seizures. Rats underwent brief (40-min) seizures evoked by intraamygdala kainic acid, which caused the death of ipsilateral CA3 neurons while preserving the contralateral CA3 subfield. Seizures caused a small decline in levels of the approximately 160-kD DAP kinase within injured ipsilateral hippocampus, commensurate with the appearance of an approximately 60-kD fragment, and proteolysis of the p53 inhibitor, murine double minute gene 2 (MDM2). Expression of p53 increased within the ipsilateral hippocampus, and DAP kinase was detected within p53 immunoprecipitates. In contrast, DAP kinase and MDM2 were not proteolyzed within the seizure damage-resistant contralateral hippocampus. Furthermore, DAP kinase and p53 did not interact within the contralateral hippocampus, and p53 cellular localization redistributed from the nucleus to cytoplasm commensurate with p53 proteolysis. These data suggest that DAP kinase may be involved in the p53 pathway during seizure-induced neuronal death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.