Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of the dopaminergic neurons in substantia nigra, presumably due to increased apoptosis and oxidative stress. To investigate whether PD-induced survival/apoptosis gene expression changes can serve as prognostic biomarkers of PD, we measured expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt pathway factors and additional apoptotic and anti-apoptotic factors in peripheral blood mononuclear cells (PBMC) of PD patients (n=50) and healthy controls (n=50) by real time PCR. Expression levels of apoptotic factors phosphatase and tensin homolog (PTEN) and mitochondrial apoptosis-inducing factor 1 (AIFM1) were significantly decreased, anti-apoptotic factors DJ-1 and Akt-1 were significantly increased and anti-apoptotic Bcl-2 was significantly decreased in PD patients. Expression levels of AIFM1 were significantly correlated with Hoehn–Yahr scores. Moreover, PD patients with postural instability showed significantly reduced expression levels of anti-apoptotic DJ-1, Akt-1 and mTOR than PD patients without postural instability. Expression profiles of brain samples of mice with rotenone-induced PD model and PBMC samples of PD patients showed remarkable resemblance. Our results indicate that the anti-apoptotic PI3K/Akt pathway is over activated in PD, presumably as an effort to compensate for increased neuronal apoptosis and oxidative stress. By contrast, patients with postural instability show reduced anti-apoptotic factor expression suggesting that this compensating mechanism fails in patients with this particular motor symptom. PBMC expression levels of AIFM1 might serve as a biomarker of disability and disease progression in PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.