Abstract

The presence of vascular endothelial growth factor (VEGF) in the ovary has been reported in a number of species. The objective of the present study was to demonstrate the expression of VEGF, VEGF receptor (R)-1, and VEGFR-2 in detail by different methodological approaches in bovine corpora lutea (CL) obtained from different stages of the estrous cycle and during pregnancy. VEGF and VEGF receptor transcripts were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and ribonuclease protection assay. All components of the VEGF system were found in the bovine CL during the estrous cycle and pregnancy. Analysis of VEGF transcript by RT-PCR shows that CL tissues expressed predominantly the smallest isoforms (VEGF(121) and VEGF(165)). The highest mRNA expression for VEGF and VEGFR-2 mRNA was detected during the early luteal phase, followed by a significant decrease of expression during the mid and late luteal phase and a further decrease of VEGF mRNA after regression. During pregnancy, high levels of expression were always present. In contrast, no significant change in VEGFR-1 mRNA expression during the estrous cycle and pregnancy was found. The VEGF protein concentration in CL tissue was significantly higher (20.9-23.4 ng/g wet weight) during the early luteal phase (Days 1-7), followed by a decrease at the late luteal phase (14.3-18.7 ng/g wet weight) and, especially, after CL regression (2.8 ng/g wet weight). However, relatively high levels were found during pregnancy (10.1 ng/g wet weight). As achieved by immunohistochemistry, VEGF protein was localized predominantly in luteal cells. High VEGF protein and transcript concentrations and increased VEGFR-2 expression during the early luteal phase coincided with luteal vascularization. These results suggest an important role of VEGF in angiogenesis of the newly formed CL. The high VEGF mRNA expression and protein levels during matured vasculature in the mid-stage CL and pregnancy also suggest also a survival function for endothelial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.