Abstract
Exocytosis of insulin containing Large Dense Core Vesicles (LDCVs) from pancreatic beta-cells and derived cell lines is mainly controlled by Ca(2+). Several lines of evidence have demonstrated a role of the Ca(2+)- and phospholipid-binding protein synaptotagmin (syt) in this event. Synaptotagmins form a large protein family with distinct affinities for Ca(2+) determined by their two C(2) domains (C(2)A/B). Except for the well-characterized isoforms I and II, their role is still unclear. We have used here insulin-secreting cells as a model system for LDCV exocytosis to gain insight into the function of synaptotagmins. Immunocytochemical analysis revealed that of the candidate Ca(2+) sensors in LDCV exocytosis, syt III was not expressed in primary beta-cells, whereas syt IV was only found adjacent to the TGN. However, syt V-VIII isoforms were expressed at different levels in various insulin-secreting cells and in pancreatic islet preparations. In streptolysin-O permeabilized primary beta-cells the introduction of recombinant peptides (100 nM) corresponding to the C(2) domains of syt V, VII and VIII, but not of syt III, IV or VI, inhibited Ca(2+)-evoked insulin exocytosis by 30% without altering GTP gamma S-induced release. Our observations demonstrate that syt III and IV are not involved in the exocytosis of LDCVs from primary beta-cells whereas V, VII and VIII may mediate Ca(2+)-regulation of exocytosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.