Abstract

Reactive oxygen species (ROS) produced by neutrophils are essential in the host defense against infections but may be harmful to neutrophils themselves. Glutathione (GSH) plays a pivotal role in protecting cells against ROS-mediated oxidant injury. Cystine/glutamate transporter, designated as system xc- and consisting of two proteins, xCT and 4F2hc, is important to maintain GSH levels in mammalian-cultured cells. In the present paper, we have investigated system xc- in neutrophils. In human peripheral blood neutrophils, neither the activity of system xc- nor xCT mRNA was detected. The activity was induced, and xCT mRNA was expressed when they were cultured in vitro. The mRNA expression was much enhanced in the presence of opsonized zymosan or PMA. In contrast, mouse peritoneal exudate neutrophils, immediately after preparation, exhibited system xc- activity and expressed xCT mRNA. The activity and the expression were heightened further when they were cultured. Peritoneal exudate cells (mostly neutrophils) from xCT-deficient (xCT-/-) mice had lower cysteine content than those from the wild-type mice. GSH levels in the xCT-/-cells decreased rapidly when they were cultured, whereas those in the wild-type cells were maintained during the culture. Apoptosis induced in culture was enhanced in the xCT-/-cells compared with the wild-type cells. These results suggest that system xc- plays an important role in neutrophils when they are activated, and their GSH consumption is accelerated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.