Abstract

Oxidative stress has been implicated in the pathogenesis of Huntington’s disease (HD), however, the origin of the oxidative stress is unknown. System xc− plays a role in the import of cystine to synthesize the antioxidant glutathione. We found in the STHdhQ7/Q7 and STHdhQ111/Q111 striatal cell lines, derived from neuronal precursor cells isolated from knock-in mice containing 7 or 111 CAG repeats in the huntingtin gene, that there is a decrease in system xc− function. System xc− is composed of two proteins, the substrate specific transporter, xCT, and an anchoring protein, CD98. The decrease in function in system xc− that we observed is caused by a decrease in xCT mRNA and protein expression in the STHdhQ111/Q111 cells. In addition, we found a decrease in protein and mRNA expression in the transgenic R6/2 HD mouse model at 6weeks of age. STHdhQ111/Q111 cells have lower basal levels of GSH and higher basal levels of ROS. Acute inhibition of system xc− causes greater increase in oxidative stress in the STHdhQ111/Q111 cells than in the STHdhQ7/Q7 cells. These results suggest that a defect in the regulation of xCT may be involved in the pathogenesis of HD by compromising xCT expression and increasing susceptibility to oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.