Abstract

A sudden increase in temperature results in heat shock stress of the cultured shrimp. To cope with the stress, shrimp has to overcome by triggering a response known as heat shock response. To understand the heat shock response in the black tiger shrimp ( Penaeus monodon), we examined expression patterns and distribution of three heat shock protein ( hsp) genes in P. monodon juveniles. The expression levels of hsp21, hsp70 and hsp90 were determined by quantitative real-time PCR in nine tissues (gill, heart, hepatopancreas, stomach, intestine, eyestalk, pleopod, thoracic ganglia and hemocyte) under untreated and heat shock conditions. Under untreated condition, all three hsp genes were differentially expressed in all examined tissues where the hsp70 transcript showed the highest basal level. Under heat shock condition, only hsp90 was inducible in all nine tissues when comparing to its untreated level. The time-course induction experiment in gill and hepatopancreas revealed that the transcriptional levels of hsp21, hsp70 and hsp90 were inducible under the heat shock condition and in time-dependent manner. To determine the response of the hsp genes upon bacterial exposure, we further determined transcript levels of the hsp genes in gill of P. monodon after Vibrio harveyi injection. The expression levels of hsp70 and hsp90 were significantly increased after a 3-h exposure to V. harveyi where the hsp21 transcript was induced later after a 24-h exposure. This evidence suggests for putative roles and involvement of the hsp genes as a part of immunity response against V. harveyi in P. monodon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call