Abstract

The Msx-1 homeobox gene is expressed in various contexts during vertebrate development, including the progress zone of the avian and mouse limb bud. Expression of mouse Msx-1 in a cultured myogenic cell line conferred a transformed phenotype and inhibited fusion into myotubes. It has been proposed that Msx-1 expression is required to maintain certain cells in a proliferating and undifferentiated state and may be associated with the ability to regenerate limbs. Urodele amphibians such as the newt regenerate their limbs by formation of a growth zone or blastema, and we have isolated and sequenced newt Msx-1 (NvMsx-1) from a limb blastemal cDNA library. NvMsx-1 expression was detectable in RNA preparations from both limb and tail and their regeneration blastemas, although cultured cells established from limb blastemal mesenchyme gave negative results. When either COS cells or cultured newt blastemal cells were cotransfected with an expression vector for NvMsx-1 and reporter plasmids containing multiple homeobox protein binding sites, NvMsx-1 repressed reporter expression. If NvMsx-1 was expressed together with a marker enzyme in cultured newt blastemal cells, no significant difference in DNA synthesis was observed relative to control transfectants. When myogenic mononucleate cells were transfected with NvMsx-1 and subsequently exposed to low serum to promote fusion, the fraction of Msx-1 positive cells in myotubes was comparable to a control transfected population analysed in the same culture. These results indicate that although Msx-1 expression could be important for limb regeneration, it does not exert a cell-autonomous effect on proliferation or myogenic differentiation of cultured blastemal cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call