Abstract

Prenatal stress has been shown to result in the development of a number of neurological disorders in the offspring. Most of these disorders are a result of an altered HPA axis resulting in higher than normal glucocorticoid levels in the affected neonate. This leaves the offspring prone to immune challenges. Therefore the aim of the present study was to investigate the effects of prenatal stress and febrile seizures on behavior and hippocampal function. Pregnant dams were exposed to restraint stress during the third trimester. Following birth, febrile seizures were induced in two week old pups using lipopolysaccharide and kainic acid. A week later, anxiety-like behavior and navigational ability was assessed. Trunk blood was used to measure basal corticosterone concentration and hippocampal tissue was collected and analyzed. Our results show that exposure to prenatal stress increased basal corticosterone concentration. Exposure to prenatal stress exacerbated anxiety-like behavior and impaired the rat׳s navigational ability. Exposure to prenatal stress resulted in reduced hippocampal mass that was exacerbated by febrile seizures. However, exposure to febrile seizures did not affect hippocampal mass in the absence of prenatal stress. This suggests that febrile seizures are exacerbated by exposure to early life stressors and this may lead to the development of neurological symptoms associated with a malfunctioning hippocampus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.