Abstract

We investigated the associations of 17 toenail metal concentrations with blood pressure using linear regression models. Principal component analysis (PCA), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were conducted as secondary analyses. Associations were observed for selenium with diastolic blood pressure (per doubling of exposure β = 2.91, 95% confidence interval [CI] = 1.08, 4.75), molybdenum with systolic (β = 0.33, 95% CI = 0.05, 0.61) and diastolic blood pressure (β = 0.39, 95% CI = 0.12, 0.66), tin with systolic blood pressure (β = -0.33, 95% CI = -0.60, -0.06), and mercury with systolic (β = -0.83, 95% CI = -1.49, -0.17) and diastolic blood pressure (β = -0.89, 95% CI = -1.53, -0.26). Chromium was associated with diastolic blood pressure among boys only (β = 1.10, 95% CI = 0.28, 1.92, P for interaction = 0.02), and copper was associated with diastolic blood pressure among girls only (β = -1.97, 95% CI = -3.63, -0.32, P for interaction = 0.01). These findings were largely robust to the secondary analyses that utilized mixture modeling approaches (PCA, WQS, and BKMR). Future prospective studies are needed to investigate further the impact of early life exposure to metal mixtures on children's blood pressure trajectories and cardiovascular disease risk later in life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call